Microcoils and microsamples in solid-state NMR.

نویسنده

  • Kazuyuki Takeda
چکیده

Recent reports on microcoils are reviewed. The first part of the review includes a discussion of how the geometries of the sample and coil affect the NMR signal intensity. In addition to derivation of the well-known result that the signal intensity increases as the coil size decreases, the prediction that dilution of a small sample with magnetically inert matter leads to better sensitivity if a tiny coil is not available is given. The second part of the review focuses on the issues specific to solid-state NMR. They include realization of magic-angle spinning (MAS) using a microcoil and harnessing of such strong pulses that are feasible only with a microcoil. Two strategies for microcoil MAS, the piggyback method and magic-angle coil spinning (MACS), are reviewed. In addition, MAS of flat, disk-shaped samples is discussed in the context of solid-state NMR of small-volume samples. Strong RF irradiation, which has been exploited in wide-line spectral excitation, multiple-quantum MAS (MQMAS), and dipolar decoupling experiments, has been accompanied by new challenges regarding the Bloch-Siegert effect, the minimum time resolution of the spectrometer, and the time scale of pulse transient effects. For a possible solution to the latter problem, recent reports on active compensation of pulse transients are described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors.

The predominant means to detect nuclear magnetic resonance (NMR) is to monitor the voltage induced in a radiofrequency coil by the precessing magnetization. To address the sensitivity of NMR for mass-limited samples it is worthwhile to miniaturize this detector coil. Although making smaller coils seems a trivial step, the challenges in the design of microcoil probeheads are to get the highest p...

متن کامل

Rationalising Heteronuclear Decoupling in Refocussing Applications of Solid‐State NMR Spectroscopy

Factors affecting the performance of 1 H heteronuclear decoupling sequences for magic-angle spinning (MAS) NMR spectroscopy of organic solids are explored, as observed by time constants for the decay of nuclear magnetisation under a spin-echo (T2' ). By using a common protocol over a wide range of experimental conditions, including very high magnetic fields and very high radio-frequency (RF) nu...

متن کامل

Atomic force microscopy-coupled microcoils for cellular-scale nuclear magnetic resonance spectroscopy.

We present the coupling of atomic force microscopy (AFM) and nuclear magnetic resonance (NMR) technologies to enable topographical, mechanical, and chemical profiling of biological samples. Here, we fabricate and perform proof-of-concept testing of radiofrequency planar microcoils on commercial AFM cantilevers. The sensitive region of the coil was estimated to cover an approximate volume of 19....

متن کامل

Interfacing digital microfluidics with high-field nuclear magnetic resonance spectroscopy.

Nuclear magnetic resonance (NMR) spectroscopy is extremely powerful for chemical analysis but it suffers from lower mass sensitivity compared to many other analytical detection methods. NMR microcoils have been developed in response to this limitation, but interfacing these coils with small sample volumes is a challenge. We introduce here the first digital microfluidic system capable of interfa...

متن کامل

A software framework for analysing solid-state MAS NMR data

Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Solid state nuclear magnetic resonance

دوره 47-48  شماره 

صفحات  -

تاریخ انتشار 2012